Abstract

$F$-state interference significantly modifies the polarization produced by scattering processes in the solar atmosphere. Its signature in the emergent Stokes spectrum in the absence of magnetic fields is depolarization in the line core. In the present paper, we derive the partial frequency redistribution (PRD) matrix that includes interference between the upper hyperfine structure states of a two-level atom in the presence of magnetic fields of arbitrary strengths. The theory is applied to the Na I D$_2$ line that is produced by the transition between the lower $J=1/2$ and upper $J=3/2$ states which split into $F$ states because of the coupling with the nuclear spin $I_s=3/2$. The properties of the PRD matrix for the single-scattering case is explored, in particular, the effects of the magnetic field in the Paschen--Back regime and their usefulness as a tool for the diagnostics of solar magnetic fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call