Abstract

Resonance Raman spectroscopy is an ideal tool to investigate the structural properties of chromophores embedded in complex (biological) environments. This holds particularly for metalporphyrins which serve as prosthetic group in various proteins. Resonance Raman dispersion spectroscopy involves the measurement of resonance excitation and depolarization ratios of a large number of Raman lines at various excitation energies covering the spectral region of the chromophore's optical absorption bands. Thus, one obtains resonance excitation profiles and the depolarization ratio dispersion of these bands. While the former contains information about the structure of excited electronic states involved in the Raman scattering process, the latter reflects asymmetric perturbations which lower the porphyrin macrocycle symmetry from ideal D4h. The article introduces and compares different quantum mechanical approaches designed to quantitatively analyze both resonance excitation and the relationship between symmetry lowering and depolarization ratio dispersion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call