Abstract

Among various remote sensing approaches, optical polarization remote sensing shows great advantages in identifying oil-water emulsions in seawater and has become one of the most promising detection technologies. Herein, we focus on exploring the sensitivity of polarized radiative transfer properties for oil emulsion polarization detection to the influence factors of viewing angle, droplet volume fraction and radius, incident wavelength, and emulsion thickness. The radiative properties of seawater droplets dispersed in crude oil are calculated using the improved Lorenz-Mie theory considering the absorption of crude oil as the host medium, after which the reflected Stokes vector and the degree of linear polarization (DOLP) of seawater-in-oil emulsions floating on seawater are obtained using the spectral element method. By analyzing the calculation results of a 0° viewing azimuth angle, the detection wavelength and viewing zenith angles corresponding to the highest sensitivity of the DOLP to the above factors are significantly different; thus, quantitative remote sensing detection of the droplet volume fraction, droplet diameter, and emulsion thickness is possible. Exploring the sensitivity of polarized remote sensing signals for oil emulsion polarization detection to the above factors is a prerequisite for quantitative polarization detection of oil emulsions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call