Abstract

Polarization characteristics of luminescence from partial dislocations (PDs) in 4H-SiC have been investigated by room-temperature photoluminescence (PL) imaging. After expansion of Shockley stacking faults by high-power laser irradiation, PL from PDs tilted by 6° from their Burgers vector (6°-PDs) was observed with almost the same PL peak energy as that of 30°-Si (g) PDs. The PL from the 30°-Si (g) and 6°-PDs which were mobile under illumination were both found to be polarized perpendicular to their dislocation lines. In contrast, the PL from immobile 30°-C(g) PDs was not polarized. The present results suggest that the carriers bound to the 30°-Si (g) and 6°-PDs have anisotropic wave functions and those bound to 30°-C(g)PDs have isotropic wave functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.