Abstract

In the previous two papers, namely, \citet{anuknn11} and \citet{anuetal11} we solved the polarized radiative transfer (RT) equation in multi-dimensional (multi-D) geometries, with partial frequency redistribution (PRD) as the scattering mechanism. We assumed Rayleigh scattering as the only source of linear polarization ($Q/I, U/I$) in both these papers. In this paper we extend these previous works to include the effect of weak oriented magnetic fields (Hanle effect) on line scattering. We generalize the technique of Stokes vector decomposition in terms of the irreducible spherical tensors $\mathcal{T}^K_Q$, developed in \citet{anuknn11}, to the case of RT with Hanle effect. A fast iterative method of solution (based on the Stabilized Preconditioned Bi-Conjugate-Gradient technique), developed in \citet{anuetal11}, is now generalized to the case of RT in magnetized three-dimensional media. We use the efficient short-characteristics formal solution method for multi-D media, generalized appropriately to the present context. The main results of this paper are the following: (1) A comparison of emergent $(I, Q/I, U/I)$ profiles formed in one-dimensional (1D) media, with the corresponding emergent, spatially averaged profiles formed in multi-D media, shows that in the spatially resolved structures, the assumption of 1D may lead to large errors in linear polarization, especially in the line wings. (2) The multi-D RT in semi-infinite non-magnetic media causes a strong spatial variation of the emergent $(Q/I, U/I)$ profiles, which is more pronounced in the line wings. (3) The presence of a weak magnetic field modifies the spatial variation of the emergent $(Q/I, U/I)$ profiles in the line core, by producing significant changes in their magnitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.