Abstract
The tension in the stress fibers (SFs) of cells plays a pivotal role in determining biological processes such as cell migration, morphological formation, and protein synthesis. Our previous research developed a method to evaluate the cellular contraction force generated in SFs based on photoelasticity-associated retardation of polarized light; however, we employed live cells, which could have caused an increase in retardation and not contraction force. Therefore, the present study aimed to confirm that polarized light retardation increases inherently due to contraction, regardless of cell activity. We also explored the reason why retardation increased with SF contractions. We used SFs physically isolated from vascular smooth muscle cells to stop cell activity. The retardation of SFs was measured after ATP administration, responsible for contracting SFs. The SFs were imaged under optical and electron microscopes to measure SF length, width, and retardation. The retardation of isolated SFs after ATP administration was significantly higher than before. Thus, we confirmed that retardation increased with elevated tension in individual SFs. Furthermore, the SF diameter decreased while the SF length remained almost constant. Thus, we conclude that a contraction force-driven increase in the density of SFs is the main factor for the rise in polarized light retardation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.