Abstract

Contraction of individual sarcomeres within the living mite Tarsonemus sp. was observed by polarized light microscopy. In unflattened animals the usual range of contraction was such that the minimum sarcomere length approximated the length of the A region, and the maximum sarcomere length was about twice the length of the A region. The central sarcomeres of the dorsal metapodosomal muscles were observed in detail. The A band length increased slightly with increasing sarcomere length since the regression of I region length on sarcomere length had an average slope of 0.91. When the A band length in a sarcomere which was shortening was compared with the length when the same sarcomere lengthened, no significant difference was seen. The A band of each sarcomere seemed to act as a not too rigid limit to further shortening; this agreed with the reversible shortening of a muscle in which the A band had been experimentally shortened. An H region was visible at long sarcomere lengths and was not visible at short sarcomere lengths, even when the muscle was actively shortening. The rate of change of H region length with sarcomere length suggested that I filament length may increase as sarcomere length increases. Despite this effect and the small increase in A length with sarcomere length, the results are considered to be consistent with a model in which shortening occurs by the relative movement of A and I filaments, with little or no change in length of either set of filaments. Sarcomere shortening was clearly associated with an increase in the retardation of the A region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.