Abstract
An Up-to-Date Compendium on the Physics and Mathematics of Polarization Phenomena Polarized Light and the Mueller Matrix Approach thoroughly and cohesively integrates basic concepts of polarization phenomena from the dual viewpoints of the states of polarization of electromagnetic waves and the transformations of these states by the action of material media. Through selected examples, it also illustrates actual and potential applications in materials science, biology, and optics technology. The book begins with the basic concepts related to two- and three-dimensional polarization states. It next describes the nondepolarizing linear transformations of the states of polarization through the Jones and Mueller–Jones approaches. The authors then discuss the forms and properties of the Jones and Mueller matrices associated with different types of nondepolarizing media, address the foundations of the Mueller matrix, and delve more deeply into the analysis of the physical parameters associated with Mueller matrices. The authors proceed to interpret arbitrary decomposition and other interesting parallel decompositions as well as compare the powerful serial decompositions of depolarizing Mueller matrix M. They also analyze the general formalism and specific algebraic quantities and notions related to the concept of differential Mueller matrix. The book concludes with useful approaches that provide a geometric point of view on the polarization effects exhibited by different types of media. Suitable for novices and more seasoned professionals, this book covers the main aspects of polarized radiation and polarization effects of material media. It expertly combines physical and mathematical concepts with important approaches for representing media through equivalent systems composed of simple components.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.