Abstract

We analyze the structure of the Föppl–von Kármán shell equations of linear elastic shell theory using surface geometry and classical invariant theory. This equation describes the buckling of a thin shell subjected to a compressive load. In particular, we analyze the role of polarized Hessian covariant, also known as second transvectant, in linear elastic shell theory and its connection to minimal surfaces. We show how the terms of the Föppl–von Kármán equations related to in-plane stretching can be linearized using the hodograph transform and relate this result to the integrability of the classical membrane equations. Finally, we study the effect of the nonlinear second transvectant term in the Föppl–von Kármán equations on the buckling configurations of cylinders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.