Abstract

We consider a polarized Fermi gas in the BCS-BEC crossover region above the critical temperature within a T matrix formalism. By treating the mean-field like shift of the quasiparticle energies in a self-consistent manner, we avoid the known pathological behavior of the standard Nozieres-Schmitt-Rink approach in the polarized case, i.e., the polarization has the right sign and the spin polarizability is positive. The momentum distributions of the correlated system are computed and it is shown that, in the zero-temperature limit, they satisfy the Luttinger theorem. Results for the phase diagram, the spin susceptibility, and the compressibility are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.