Abstract
The determination of the division plane in protodermal cells of the fern Asplenium nidus occurs during interphase with the formation of the phragmosome, the organization of which is controlled by the actomyosin system. Usually, the phragmosomes between adjacent cells were oriented on the same plane. In the phragmosomal cortical cytoplasm, an interphase microtubule (MT) ring was formed and large quantities of endoplasmic reticulum (ER) membranes were gathered, forming an interphase U-like ER bundle. During preprophase/prophase, the interphase MT ring and the U-like ER bundle were transformed into a MT and an ER preprophase band (PPB), respectively. Parts of the ER-PPB were maintained during mitosis. Furthermore, the plasmalemma as well as the nuclear envelope displayed local polarization on the phragmosome plane, while the cytoplasm between them was occupied by distinct ER aggregations. These consistent findings suggest that Α. nidus protodermal cells constitute a unique system in which three elements of the endomembrane system (ER, plasmalemma, and nuclear envelope) show specific characteristics in the establishing division plane. Our experimental data support that the organization of the U-like ER bundle is controlled on a cellular level by the actomyosin system and intercellularly by factors emitted from the leaf apex. The possible role of the above endomembrane system elements on the mechanism that coordinates the determination of the division plane between adjacent cells in protodermal tissue of A. nidus is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.