Abstract

A novel thermotropic liquid crystalline polymers poly{3-benzylidene amino-4-hydroxybenzoic acid (3,4-BAHBA)-co-trans-4-hydroxycinnamic acid (4HCA: trans-coumaric acid)} (Poly(3,4-BAHBA-co-4HCA)), was synthesized by the thermal polycondensation of 4HCA and 3,4-BAHBA, which was synthesized by a reaction of 3-amino-4-hydroxybenzoic acid (3,4-AHBA) with benzaldehyde. When the 4HCA compositions of Poly(3,4-BAHBA-co-4HCA)s were above 55 mol%, the copolymers showed a nematic, liquid crystalline phase. Differential scanning calorimetry (DSC) measurements of the copolymers showed a high glass transition temperature of more than 100 °C, sufficient for use in engineering plastics. Furthermore, the copolymers showed photoluminescence in an N-methylpyrrolidone (NMP) solution under ultraviolet (UV) light with a wavelength of 365 nm. Oriented film of Poly(3,4-BAHBA-co-4HCA) with a 4HCA composition of 75 mol% emitted polarized light, which was confirmed by fluorescent spectroscopy equipped with parallel and crossed polarizers.

Highlights

  • Liquid crystalline (LC) polymers are oriented at the molecular level to create materials with ultrahigh-strength, a high modulus, and other orientation-related functions [1,2]

  • We report the synthesis and characterization of the copolymer poly{3-benzylidene amino-4-hydroxybenzoic acid (3,4-BAHBA)-co-trans-4-hydroxycinnamic acid (4HCA: trans-coumaric acid)} (Poly(3,4-BAHBA-co-4HCA)). 3,4-BAHBA is a functional biomonomer synthesized by the reaction of benzaldehyde with 3-amino-4-hydroxybenzoic acid (3,4AHBA), which can be extracted from Streptomyces griseus, a microorganism suitable for the mass-production of various biomolecules [17]. 3,4-BAHBA has a Schiff-based moiety showing visible light absorption and rigid components, and 4HCA is a suitable comonomer for the production of high-performance polymers

  • The monomer 3,4-BAHBA was synthesized by the reaction of 3,4-AHBA with benzaldehyde (Scheme 1)

Read more

Summary

Introduction

Liquid crystalline (LC) polymers are oriented at the molecular level to create materials with ultrahigh-strength, a high modulus, and other orientation-related functions [1,2]. Polymers 2011, 3 poly(p-phenylene terephthalamide) (KevlarTM) and poly(p-phenylene-2,6-benzobisoxazole) (ZylonTM), which have a high proportion of rigid aromatic moieties, showed lyotropic liquid crystals that could be induced to prepare highly-oriented fibers [3,4]. They are widely used as electrical insulation, protective clothing, straps, cables, and aerospace materials. 3,4-BAHBA has a Schiff-based moiety showing visible light absorption and rigid components, and 4HCA is a suitable comonomer for the production of high-performance polymers.

Syntheses
Liquid Crystalline Properties
Photoluminescence
Materials
Measurements
Photoluminescence of Oriented Film
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.