Abstract

Polarized electronic absorption spectra, E∥a(∥X), E∥b(∥Y) and E∥c(∥Z), in the energy range 3000–5000 cm–1 were obtained for the orthorhombic thenardite-type phase Cr2SiO4, unique in its Cr2+-allocation suggesting some metal-metal bonding in Cr2+Cr2+ pairs with Cr-Cr distance 2.75 A along [001]. The spectra were scanned at 273 and 120 K on single crystal platelets ∥(100), containing optical Y and Z, and ∥(010), containing optical X and Z, with thicknesses 12.3 and 15.6 μm, respectively. Microscope-spectrometric techniques with a spatial resolution of 20 μm and 1 nm spectral resolution were used. The orientations were obtained by means of X-ray precession photographs. The xenomorphic, strongly pleochroic crystal fragments (X deeply greenish-blue, Y faint blue almost colourless, Z deeply purple almost opaque) were extracted from polycrystalline Cr2SiO4, synthesized at 35 kbar, above 1440 °C from high purity Cr2O3, Cr (10% excess) and SiO2 in chromium capsules. The Cr2SiO4-phase was identified by X-ray diffraction (XRD). Four strongly polarized bands, at about 13500 (I), 15700 (II), 18700 (III) and 19700 (IV) cm–1, in the absorption spectra of Cr2SiO4 single crystals show properties (temperature behaviour of linear and integral absorption coefficients, polarization behaviour, molar absorptivities) which are compatible with an assignment to localized spin-allowed transitions of Cr2+ in a distorted square planar coordination of point symmetry C2. The crystal field parameter of Cr2+ is estimated to be 10 Dq≃10700 cm–1. A relatively intense, sharp band at 18400 cm–1 and three other minor features can, from their small half widths, be assigned to spin-forbidden dd-transitions of Cr2+. The intensity of such bands strongly decreases on decreasing temperature. The large half widths, near 5000 cm–1 of band III are indicative of some Cr-Cr interactions, i.e. δ-δ* transitions of Cr24+, whereas the latter alone would be in conflict with the strong polarization of bands I and II parallel [100]. Therefore, it is concluded that the spectra obtained can best be interpreted assuming both dd-transitions of localized d-electrons at Cr2+ as well as δ-δ* transitions of Cr24+ pairs with metal-metal interaction. To explain this, a dynamic exchange process 2 Crloc2+⇔Cr2, cpl4+ is suggested wherein the half life times of the ground states of both exchanging species are significantly longer than those of the respective optically excited states, such that the spectra show both dd- and δ-δ*-transitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call