Abstract

Polarized communities search aims at locating query-dependent communities, in which mostly nodes within each community form intensive positive connections, while mostly nodes across two communities are connected by negative links. Current approaches towards polarized communities search typically model the network topology, while the key factor of node, i.e., the attributes, are largely ignored. Existing studies have shown that community formation is strongly influenced by node attributes and the formation of communities are determined by both network topology and node attributes simultaneously. However, it is nontrivial to incorporate node attributes for polarized communities search. Firstly, it is hard to handle the heterogeneous information from node attributes. Secondly, it is difficult to model the complex relations between network topology and node attributes in identifying polarized communities. To address the above challenges, we propose a novel method Co-guided Random Walk in Attributed signed networks (CoRWA) for polarized communities search by equipping with reasonable attribute setting. For the first challenge, we devise an attribute-based signed network to model the auxiliary relation between nodes and a weight assignment mechanism is designed to measure the reliability of the edges in the signed network. As to the second challenge, a co-guided random walk scheme in two signed networks is designed to explicitly model the relations between topology-based signed network and attribute-based signed network so as to enhance the search result of each other. Finally, we can identify polarized communities by a well-designed Rayleigh quotient in the signed network. Extensive experiments on three real-world datasets demonstrate the effectiveness of the proposed CoRWA. Further analysis reveals the significance of node attributes for polarized communities search.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.