Abstract

SummaryMesenchymal cell motility is driven by polarized actin polymerization [1]. Signals at the leading edge recruit actin polymerization machinery to promote membrane protrusion, while matrix adhesion generates tractive force to propel forward movement. To work effectively, cell motility is regulated by a complex network of signaling events that affect protein activity and localization. H2O2 has an important role as a diffusible second messenger [2], and mediates its effects through oxidation of cysteine thiols. One cell activity influenced by H2O2 is motility [3]. However, a lack of sensitive and H2O2-specific probes for measurements in live cells has not allowed for direct observation of H2O2 accumulation in migrating cells or protrusions. In addition, the identities of proteins oxidized by H2O2 that contribute to actin dynamics and cell motility have not been characterized. We now show, as determined by fluorescence lifetime imaging microscopy, that motile cells generate H2O2 at membranes and cell protrusions and that H2O2 inhibits cofilin activity through oxidation of cysteines 139 (C139) and 147 (C147). Molecular modeling suggests that C139 oxidation would sterically hinder actin association, while the increased negative charge of oxidized C147 would lead to electrostatic repulsion of the opposite negatively charged surface. Expression of oxidation-resistant cofilin impairs cell spreading, adhesion, and directional migration. These findings indicate that H2O2 production contributes to polarized cell motility through localized cofilin inhibition and that there are additional proteins oxidized during cell migration that might have similar roles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.