Abstract

The acceleration of polarized electron beams in the blowout regime of plasma-based acceleration is explored. An analytical model for the spin precession of single beam electrons, and depolarization rates of zero emittance electron beams, is derived. The role of finite emittance is examined numerically by solving the equations for the spin precession with a spin tracking algorithm. The analytical model is in very good agreement with the results from 3D particle-in-cell simulations in the limits of validity of our theory. Our work shows that the beam depolarization is lower for high-energy accelerator stages, and that under the appropriate conditions, the depolarization associated with the acceleration of 100-500 GeV electrons can be kept below 0.1-0.2%.

Highlights

Read more

Summary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.