Abstract
The chemical fixation of CO2 as a C1 feedstock is considered one of the most promising ways to obtain long-chain chemicals, but its efficiency was limited by the ineffective activation of CO2. Herein, we propose a grain boundary engineering strategy to construct polarized active pairs with electron poor-rich character for effective CO2 activation. By taking CeO2 as a model system, we illustrate that the polarized "Ce4+-Ce3+-Ce4+" pairs at the grain boundary can simultaneously accept and donate electrons to coordinate with O and C, respectively, in CO2. By the combination of synchrotron radiation in situ technique and density functional theory calculations, the mechanism of the catalytic reaction has been systematically investigated. As a result, the CeO2 nanosheets with a rich grain boundary show a high DMC yield of 60.3 mmol/gcat with 100% atomic economy. This study provides a practical way for the chemical fixation of CO2 to high-value-added chemicals via grain boundary engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.