Abstract

Thermally tunable extraordinary terahertz transmission in a hybrid metal-vanadium dioxide (VO2) metasurface is numerically demonstrated. The metasurface consists of a metal sheet perforated by square loops, while the loops are connected with strips of VO2. The frequency and amplitude of the transmission resonance are modulated by controlling the conductivity of VO2. For a y-polarized incident field, the resonance transmission peak redshifts from 0.88 to 0.81 THz upon insulator-to-metallic phase transition of VO2. For an x-polarized incident field, the transmission resonance at 0.81 THz is observed in the insulator phase. However, in the metallic phase of VO2, the electromagnetic field is effectively reflected in the 0.5-1.1 THz range with a transmission level lower than 0.14. The proposed metasurface can be utilized as a terahertz modulator, reconfigurable filter, or switch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call