Abstract
We describe a Polarization Sensitive Optical Coherence Tomography (PS-OCT) system with de-correlated horizontal and vertical channels. Construction of PS-OCT depth-resolved images is achieved with a scanning bulk Michelson interferometer and a broadband TiAl 2 O 3 femtosecond laser source. We de-correlate and delay horizontal and vertical channels using a birefringent crystal in the source path and calcite prism pairs in the sample and reference paths. Cross-correlation and phase changes between horizontal and vertical channels are measured at different reference-sample optical delays in correlated and de-correlated PS-OCT. PS-OCT with de-correlated (DPS-OCT) channels can broaden applications to include de-correlated Doppler imaging of blood flow and imaging the retinal nerve fiber layer with delayed channels. We achieve a differential delay of 0-400 microns between vertical and horizontal channels by translating the calcite prisms. DPS-OCT system design and experimental measurements are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.