Abstract

We give a complete combinatorial characterization of all possible polarizations of powers of the graded maximal ideal (x1,x2,…,xm)n of a polynomial ring in m variables. We also give a combinatorial description of the Alexander duals of such polarizations. In the three variable case m=3 and also in the power two case n=2 the descriptions are easily visualized and we show that every polarization defines a (shellable) simplicial ball. We give conjectures relating to topological properties and to algebraic geometry, in particular that any polarization of an Artinian monomial ideal defines a simplicial ball.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.