Abstract

In this paper, we propose a reflective two-dimensional (2D) metal-dielectric grating based on cylindrical hole nano arrays with excellent polarization-independent high diffraction efficiency. The effects of the geometrical parameters on the polarization characteristic and diffraction efficiency are studied. Optimized results show that the (-1, 0) order diffraction efficiency of transverse electric (TE) and transverse magnetic (TM) polarizations under Littrow mounting is 98.31% and 98.05% at 780 nm incident wavelength, and the diffraction efficiency equilibrium is 99.74%, which is a significant improvement over the previously reported 2D gratings. The high efficiency in both TE and TM polarizations makes it a potential candidate as planar grating rulers for high precision multi-axis displacement measurement. Moreover, the cylindrical hole-based structure performs well in manufacturing tolerances, which provides the possibility for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call