Abstract

Fluorescence microscopy possesses the advantages of high resolution, high sensitivity, molecular specificity and noninvasiveness, providing an important tool in life science research. The multifocal array and 3D structured light are two kinds of important light fields that are often used in scanning fluorescence microscopy systems and wide-field fluorescence microscopy systems. However, traditional methods for generating multifocal arrays and 3D structured light illumination rely on various bulk optical components, making it challenging to achieve compact optical systems. Besides, generating these two types of illumination typically requires two separate and independent optical systems, hindering the integration of different types of fluorescence microscopy systems. Here, a dielectric metasurface is proposed that can achieve the switching between multifocal arrays and 3D structured light through polarization state modulation, greatly simplifying the illumination optics of fluorescence microscopy systems and facilitating the integration of different types of fluorescence microscopy systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call