Abstract

Ubiquitous surface wrinkling has been well-studied theoretically and experimentally. How to modulate the stress state of a liquid-supported system for the unexploited wrinkling capabilities remains a challenge. Here we report a simple linearly-polarized-light illumination to spatiotemporally trigger ultrasensitive in situ dynamic wrinkling on a floating azo-film. The smart combination of the liquid substrate with photoresponsive azo-moieties leads to the light-induced ultrafast wrinkling evolution, accompanied by unprecedented sequential wrinkling orientation conversion (from polarization-parallel to polarization-perpendicular). The involved different polarization-dependent sequential photo-orientation for azo side chains and azo-grafted main chains of azopolymers is disclosed experimentally for the first time. Meanwhile, programmable dynamic wrinkling with all-optical switchable surface topographies is available, which has wide application potentials in photoresponsive soft photonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.