Abstract

When a transparent surface is present between an observer and an object, an image reflected by the surface may be superimposed on the image of the observed object. We present a new approach to recover the scenes (layers) and to classify which is the reflected/transmitted one, based on imaging through a polarizing filter at two orientations. Estimates of the separate layers are obtained by weighted pixel-wise differences of these images, inverting the image formation process. However the weights depend on the angle of incidence, hence on the inclination of the transparent (invisible) surface. This angle is estimated by seeking the angle-value which (through the weights) leads to decorrelation of the estimated layers. Experimental results, obtained using real photos of actual objects, demonstrate the success of angle estimation and consequent layer separation and labeling. The method is shown to be superior to earlier methods where only raw optical data was used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.