Abstract

Motion detector interneurons were examined to determine their responsiveness to the motion of polarized light images (i.e. images segmented by spatial variations in e-vector angle). Computer generated images were displayed as intensity contrasts or polarization contrasts on a modified LCD projection panel. The stimuli included the motion of a single stripe (45 degrees -55 degrees /s) and the global motion of a square wave grating (3.3 degrees /s). Neurons were impaled in the medulla interna. Of the neurons which exhibited a directional response to the motion of intensity contrast stimuli, about 2/3 were also directional in the response to polarized light images. Transient (nondirectional) stimuli included looming and jittery motions. The responses to the transient motions of the polarized light images were roughly comparable to those elicited by intensity contrast. The results imply that behavioral responses to polarized light images (i.e. optokinetic and defense reflexes) may have a basis in the polarization sensitivity and synaptic organization of the medulla interna.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call