Abstract
The GEp-III and GEp-2$\gamma$ experiments were carried out in Jefferson Lab's (JLab's) Hall C from 2007-2008, to extend the knowledge of $G_E^p/G_M^p$ to the highest practically achievable $Q^2$ and to search for effects beyond the Born approximation in polarization transfer observables of elastic $\vec{e}p$ scattering. This article reports an expanded description of the common experimental apparatus and data analysis procedure, and the results of a final reanalysis of the data from both experiments, including the previously unpublished results of the full-acceptance data of the GEp-2$\gamma$ experiment. The Hall C High Momentum Spectrometer detected and measured the polarization of protons recoiling elastically from collisions of JLab's polarized electron beam with a liquid hydrogen target. A large-acceptance electromagnetic calorimeter detected the elastically scattered electrons in coincidence to suppress inelastic backgrounds. The final GEp-III data are largely unchanged relative to the originally published results. The statistical uncertainties of the final GEp-2$\gamma$ data are significantly reduced at $\epsilon = 0.632$ and $0.783$ relative to the original publication. The decrease with $Q^2$ of $G_E^p/G_M^p$ continues to $Q^2 = 8.5$ GeV$^2$, but at a slowing rate relative to the approximately linear decrease observed in earlier Hall A measurements. At $Q^2 = 2.5$ GeV$^2$, the proton form factor ratio $G_E^p/G_M^p$ shows no statistically significant $\epsilon$-dependence, as expected in the Born approximation. The ratio $P_\ell/P_\ell^{Born}$ of the longitudinal polarization transfer component to its Born value shows an enhancement of roughly 1.4\% at $\epsilon = 0.783$ relative to $\epsilon = 0.149$, with $\approx 1.9\sigma$ significance based on the total uncertainty, implying a similar effect in the transverse component $P_t$ that cancels in the ratio $R$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.