Abstract

The marine mollusc Acanthopleura granulata (Mollusca; Polyplacophora) has a distributed visual array composed of hundreds of small image-forming eyes embedded within its eight dorsal shell plates. As in other animals with distributed visual systems, we still have a poor understanding of the visual capabilities of A. granulata and we have yet to learn where and how it processes visual information. Using behavioral trials involving isoluminant looming visual stimuli, we found that A. granulata demonstrates spatial vision with an angular resolution of 6deg. We also found that A. granulata responds to looming stimuli defined by contrasting angles of linear polarization. To learn where and how A. granulata processes visual information, we traced optic nerves using fluorescent lipophilic dyes. We found that the optic nerves innervate the underlying lateral neuropil, a neural tissue layer that circumnavigates the body. Adjacent optic nerves innervate the lateral neuropil with highly overlapping arborizations, suggesting it is the site of an integrated visuotopic map. Using immunohistochemistry, we found that the lateral neuropil of A. granulata is subdivided into two separate layers. In comparison, we found that a chiton with eyespots (Chiton tuberculatus) and two eyeless chitons (Ischnochiton papillosus and Chaetopleura apiculata) have lateral neuropil that is a singular circular layer without subdivision, findings consistent with previous work on chiton neuroanatomy. Overall, our results suggest that A. granulata effectuates its visually mediated behaviors using a unique processing scheme: it extracts spatial and polarization information using a distributed visual system, and then integrates and processes that information using decentralized neural circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call