Abstract

Compared to its one-photon counterpart, two-photon excitation is beneficial for bioimaging experiments because of its lower phototoxicity, deeper tissue penetration, efficient operation in densely packed systems, and reduced angular photoselection of fluorophores. Thus, the introduction of polarization analysis in two-photon fluorescence microscopy (2PFM) provides a more precise determination of molecular organization in a sample compared to standard imaging methods based on linear optical processes. In this work, we focus on polarization-sensitive 2PFM (ps-2PFM) and its application in the determination of molecular ordering within complex bio-structures-amyloid spherulites. Neurodegenerative diseases such as Alzheimer's or Parkinson's are often diagnosed through the detection of amyloids-protein aggregates formed due to an impaired protein misfolding process. Exploring their structure leads to a better understanding of their creation pathway and consequently, to developing more sensitive diagnostic methods. This paper presents the ps-2PFM adapted for the determination of local fibril ordering inside the bovine insulin spherulites and spherical amyloidogenic protein aggregates. Moreover, we prove that the proposed technique can resolve the three-dimensional organization of fibrils inside the spherulite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call