Abstract

Double-helix point spread function photoactivation-localization microscopy allows three-dimensional (3D) superresolution imaging of objects smaller than the optical diffraction-limit. We demonstrate polarization sensitive detection with 3D super-localization of single-molecules and unveil 3D polarization specific characteristics of single-molecules within the intracellular structure of PtK1 cells expressing photoactivatable green fluorescent protein. The system modulates orthogonal polarization components of single-molecule emissions with a single spatial light modulator and detects them separately with a single detector. Information obtained from the two polarization channels demonstrates polarization based contrast in 3D superresolution imaging. Further, we show that the 3D information from the two channels can be optimally combined to yield up to 30% improvement in localization precision relative to a single polarization channel system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.