Abstract

We report on the polarization dependence of the optical limiting and nonlinear light scattering in nanodiamond clusters suspended in distilled water. The nanosecond Z-scan measurements at a wavelength of 532 nm reveal that the nonlinear transmittance of the suspension is independent of polarization, while the energy of the light pulses scattered at 90 deg shows a cosine-like dependence on the polarization azimuth of the incident beam. Moreover, the ratio of the energies of the vertically and horizontally polarized scattered pulses is a nonmonotonous function of the input fluence. The obtained results can be explained in terms of the change of scattering center size under the laser action and are in agreement with the predictions of the Rayleigh–Mie scattering theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call