Abstract

Laser patterning of thin films of materials is widely used for the fabrication of one-, two- and three-dimensional functional nanomaterials. Using structured laser beams with a complex structure of amplitude, phase, and polarization distributions allows one to significantly simplify and speed up the procedure of manufacturing nano- and microstructures with a complex shape, such as a spiral structure. Here, we demonstrate the use of vortex laser beams with a helical wavefront for the realization of spiral mass transfer in azopolymer films. The polarization sensitivity of this material allows us to demonstrate the formation of different three-dimensional structures in the case of linearly or circularly polarized vortex beams of different orders. The presented theoretical analysis shows that the profile of the fabricated structures is defined by the structure of the longitudinal component of the incident radiation, and thus can be easily controlled with the polarization state of the radiation without the need to change the amplitude-phase structure of the beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call