Abstract

Wide-scale sensing of natural and human-made events is critical for protecting against environmental disasters and reducing the monetary losses associated with telecommunication service downtime. However, achieving dense sensing coverage is difficult, given the high deployment overhead of modern sensor networks. Here we offer an in-depth exploration of state-of-polarization sensing over fiber-optic networks using unmodified optical transceivers to establish a strong correlation with ground truth distributed acoustic sensing. To validate our sensing methodology, we collect 85 days of polarization and distributed acoustic sensing measurements along two colocated, 50 km fiber-optic cables in Southern California. We then examine how polarization sensing can improve network reliability by accurately modeling overall network health and preemptively detecting traffic loss. Finally, we explore the feasibility of wide-scale seismic monitoring with polarization sensing, showcasing the polarization perturbations following low-intensity earthquakes and the potential to more than double seismic monitoring coverage in Southern California alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.