Abstract
This paper describes the first observation of polarization-selective four-wave mixing signals in conventional coupling-probe spectroscopy, specifically, saturation absorption spectroscopy in 85Rb atoms. The four-wave mixing signal is induced by two counter-propagating laser beams in a degenerate multi-level atomic system, involving the Fg=3→Fe=2,3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F_g=3 \\rightarrow F_e =2,3$$\\end{document}, and 4 transitions of the 85Rb D2 line. Consequently, the four-wave mixing signals copropagating along the probe beam induce polarization rotation of a linearly polarized probe beam. To distinguish these four-wave mixing signals from the resulting probe beam, we detect the polarization components orthogonal to the polarization direction of the input probe beam, depending on the linear polarization angles between the probe and coupling beams. The experimental findings demonstrate excellent agreement with theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.