Abstract

Photonic devices that exhibit all-optically reconfigurable polarization dependence with a large dynamic range would be highly attractive for active polarization control. Here, we report that strongly polarization-selective nonlinear optomechanical interactions emerge in subwavelength waveguides. By using full-vectorial finite element analysis, we find, at certain core ellipticities (or aspect ratios), that the forward simulated light scattering mediated by a specific acoustic resonance mode is eliminated for one polarization mode. Whereas, that for the other polarization mode is rather enhanced. This intriguing phenomenon can be explained by the interplay between the electrostrictive force and radiation pressure and turns out to be tailorable by the choice of waveguide materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call