Abstract
Using both direct mathematical analysis and numerical modeling based on the predictions by Jones [1] it is shown that if the director in a liquid crystal cell is in a plane which lies at 45 degrees to the incident polarization, then, for normally incident light, the transmission signal which conserves polarization will always have a phase difference of pi/2 from the transmission signal of the orthogonal polarization. This is independent of the director profile in the plane, the cell thickness, the anisotropy of the liquid crystal refractive index and the optical parameters of other isotropic layers in the cell. Based on this realization a hybrid aligned nematic liquid crystal cell has been tested as a thresholdless voltage-controlled polarization rotator. By using a quarter-wave plate to compensate for the phase difference between the two orthogonal output polarizations a simple liquid crystal spatial light modulator has been realized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.