Abstract
The linear-to-elliptical transformation of a 400 nm femtosecond-probe pulse in the birefringent filament in argon of an 800 nm linearly polarized femtosecond-pump pulse is studied numerically and experimentally. The rotation of the probe elliptical polarization is the largest in the high-intensity filament core. With propagation, the rotated radiation diffracts outward by the pump-produced plasma. The transmission of the analyzer crossing the probe's polarization is maximum at the pump-probe angle of 45 degrees and gives equal values for each pair of angles symmetrically situated at both sides of the maximum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.