Abstract

Changes in the electrostrictive coefficients Qij, especially the volumetric coefficient, with temperature and bias field provides important information regarding the nature of the polarization in lead magnesium niobate based relaxor ferroelectrics. We show that the polarization response at temperatures near the dielectric constant maximum is mainly through the polar-vector reorientation of the nanopolar regions, as suggested by the polar glass model. As the temperature is lowered through the freezing transition, the polarization response is governed by the phase switching and intrinsic contributions rather than by the domain wall motions found in normal ferroelectrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.