Abstract

The conventional scintillation, or intensity fluctuation, that occurs in random electromagnetic beams is just one member of a broader class of four interconnected, polarization-resolved scintillations. We examine these generalized scintillations, called Stokes scintillations, that occur when two stochastic electromagnetic beams are made to interfere in Young's experiment. We find that the magnitude of the conventional scintillation can be decreased, within certain limits, at the expense of an increase of one or more of the other Stokes scintillations. For certain applications however, it may be beneficial to suppress the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call