Abstract
Recent progress in polarization-resolved photodetection based on low-symmetry 2D materials has formed the basis of cutting-edge optoelectronic devices, including quantum optical communication, 3D image processing, and sensing applications. Here, we report an optical polarization-resolving photodetector (PD) fabricated from multilayer semiconducting CrSBr single crystals with high structural anisotropy. We have demonstrated self-powered photodetection due to the formation of Schottky junctions at the Au-CrSBr interfaces, which also caused the photocurrent to display a position-sensitive and binary nature. The self-biased CrSBr PD showed a photoresponsivity of ∼0.26 mA/W with a detectivity of 3.4 × 108 Jones at 514 nm excitation of fluency (0.42 mW/cm2) under ambient conditions. The optical polarization-induced photoresponse exhibits a large dichroic ratio of 3.4, while the polarization is set along the a- and the b-axes of single-crystalline CrSBr. The PD also showed excellent stability, retaining >95% of the initial photoresponsivity in ambient conditions for more than five months without encapsulation. Thus, we demonstrate CrSBr as a fascinating material for ultralow-powered optical polarization-resolving optoelectronic devices for cutting-edge technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.