Abstract

Free-electron-based measurements in scanning transmission electron microscopes (STEMs) reveal valuable information on the broadband spectral responses of nanoscale systems with deeply subdiffraction limited spatial resolution. Leveraging recent advances in manipulating the spatial phase profile of the transverse electron wavefront, we theoretically describe interactions between the electron probe and optically stimulated nanophotonic targets in which the probe gains energy while simultaneously transitioning between transverse states with distinct phase profiles. Exploiting the selection rules governing such transitions, we propose phase-shaped electron energy gain nanospectroscopy for probing the 3D polarization-resolved response field of an optically excited target with nanoscale spatial resolution. Considering ongoing instrumental developments, polarized generalizations of STEM electron energy loss and gain measurements hold the potential to become powerful tools for fundamental studies of quantum materials and their interaction with nearby nanostructures supporting localized surface plasmon or phonon polaritons as well as for noninvasive imaging and nanoscale 3D field tomography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.