Abstract
The spike encoding properties of two polarization-resolved modes in vertical-cavity surface-emitting laser with an embedded saturable absorber (VCSEL-SA) are investigated numerically, based on the spin-flip model combined with the Yamada model. The results show that the external input optical pulse (EIOP) can be encoded into spikes in X-polarization (XP) mode, Y-polarization (YP) mode, or both XP and YP modes. Furthermore, the numerical bifurcation diagrams show that a lower (higher) strength of EIOP is beneficial for generating tonic (phasic) spikes; a small amplitude anisotropy contributes to wide (narrow) tonic spiking range in XP (YP) mode; a large current leads to low thresholds of EIOP strength for both XP and YP modes. However, the spike encoding properties are hardly affected by the phase anisotropy. The encoding rate is shown to be improved by increasing EIOP strength. Moreover, dual-channel polarization-multiplexed spike encoding can also be achieved in a single VCSEL-SA. To the best of our knowledge, such single channel polarization-resolved and dual-channel polarization-multiplexed spike encoding schemes have not yet been reported. Hence, this work is valuable for ultrafast photonic neuromorphic systems and brain-inspired information processing.
Highlights
Vertical-cavity surface-emitting lasers (VCSELs) are popular candidates for many potential applications, including optical communication, optical signal processing, and optical computation, as they exhibit many advantages, such as low manufacturing cost, easy to integrate into two-dimensional arrays, and high energy efficiency[1,2]
We derive the theoretical model to account for the polarization dynamics, saturable absorber, and external input optical pulse (EIOP) in VCSEL-SA, by combing the well-known spin-flip model (SFM) and Yamada models
The single-channel spike encoding in the polarization-resolved modes and the dual-channel polarization-multiplexed spike encoding in a single VCSEL-SA are investigated numerically
Summary
Vertical-cavity surface-emitting lasers (VCSELs) are popular candidates for many potential applications, including optical communication, optical signal processing, and optical computation, as they exhibit many advantages, such as low manufacturing cost, easy to integrate into two-dimensional arrays, and high energy efficiency[1,2]. As can be seen in Fig. 2(a2)–(c2), for case (ii), with different Δτ of EIOP, the EIOP is encoded into one, three, and five spikes in YP mode, respectively, which are similar to the responses in XP mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.