Abstract

The polarization state of light transmitted through a polymer-dispersed liquid-crystal film with small, spherical, nonabsorbing, partially oriented nematic droplets is theoretically investigated. The model used is based on the effective medium approach. Scattering properties of a single droplet are described by the Rayleigh-Gans approximation. Propagation of coherent light is described within the framework of the Twersky theory. To describe the orientation of liquid-crystal molecules inside droplets and liquid-crystal droplets in a sample, the concept of multilevel order parameters is employed. Conditions for circular and linear polarization of the transmitted light are determined and investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.