Abstract

Physical processes that form the spectra of saturated absorption and magnetic scanning resonances on an atomic transition with level momentum J = 1 in the field of unidirectional waves of arbitrary intensity under variation in their polarization directions are investigated by numerical simulation and analytically. It is shown that anomalies in nonlinear resonance spectra are determined by the polarization of the waves and the degree of openness of the atomic transition, while anomalies in the experimentally observed magnetic scanning spectra are attributed to the magnetic coherence induced by the fields directly on the levels of the lower state, rather than to its transfer from the excited states, as was assumed earlier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call