Abstract

A model for the electrostatic interactions in water in the vicinity of a surface is suggested, which accounts, within the Poisson-Boltzmann mean field approach, for the screening of the charges and for the coupling interactions between neighboring dipoles. When the water molecules near a solid surface are assumed to be organized in icelike layers, the polarization is not a continuous function but exists only at the discrete positions of the water molecules. The particular positions of the water molecules in the icelike structure govern the manner in which the average water dipoles align with each other. On the basis of this model, one could explain the nonmonotonic behavior of the polarization and the electrical potential as well as the anomalous dielectric response of water (the nonproportionality of the polarization and the macroscopic electric field), which were obtained recently via molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.