Abstract

We suggest that infrared stimulated Raman adiabatic passage, a coherent multiple excitation process, can be used to create a superposition of (2J+1) highly correlated M-state sublevels of a rigid rotor molecule with vibrational level v and rotational level J. This method employs the (v=0,J-2) to (v=2,J) S-branch transition, which is carried out in a counterintuitive manner in which the v=1 to v=2 transition is pumped prior to the v=0 to v=1 transition, causing nearly complete population transfer to the v=2 final level. We use perpendicular and parallel linearly polarized infrared excitation (biaxial excitation). Specifically, the perpendicular polarization connects the v=1 intermediate level to the final vibrational level v=2, and the parallel polarization connects the initial level v=0 to the intermediate level v=1. By this means we break the cylindrical symmetry for an ensemble of vibrationally excited molecules in a rovibrational eigenstate (v=2,J). The angular momentum polarization is determined by the relative phases rather than by the populations of the magnetic M-sublevels. For the phase correlated ensemble, the angular momentum polarization can be considered as a purely quantum mechanical effect. Using a fully general density matrix treatment, we illustrate this approach by considering a beam of carbon monoxide (CO) molecules. We find that significant polarization for J=2, 5, and 10 can be achieved with a cw infrared laser source having modest power (∼100 mW/mm(2)). We believe that this technique is a general one and may offer an experimentally accessible new platform for different applications, from scattering studies with M-state entangled ensembles of molecules to logic gate operations of a quantum computer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call