Abstract
A density-matrix approach is under development for the investigation of the angular distribution and polarization of atomic radiative emissions in crossed quasi-static electric and magnetic fields. Particular interest has centered on applications to spectroscopic observations in the intense fields of the high-power light-ion inertial fusion device PBFA II at Sandia National Laboratories, and to magnetic field measurements in tokamak plasmas. Noteworthy features of our general density-matrix analysis include allowances for the mixing of both the bound and continuum field-free atomic eigenstates in an arbitrary arrangement of electric and magnetic fields, and for the possible coherent excitation of the nearly degenerate field-dependent atomic substates that produce the overlapping Stark-Zeeman components. The influence of directed collisional excitation may also be taken into account. From the angular-momentum selection rules, specific results have been obtained for observation of polarized radiative emissions in the direction of the magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.