Abstract

AbstractTerahertz (THz) metasurface has emerged as a powerful technique to fully modulate the wavefronts of THz radiation. To improve the information storage capability and enhance the encryption security of THz metasurface holograms, smart metasurface designs, and fabrications for polarization multiplexing are essential. In this study, two kinds of polarization multiplexing THz metasurfaces are fabricated through the slit‐based spatial modulation of femtosecond laser. Controllable elliptical aperture arrays can easily and flexibly be fabricated on gold films by adjusting the width and position of the slit combined with the laser pulse energy. Based on the Pancharatnam–Berry phase and amplitude modulation, respectively, THz metasurfaces, with two independent target phases or amplitude profiles, are obtained. A variety of information can be processed under different polarization states through these THz metasurfaces. This method allows flexible and efficient customization of THz metasurfaces because of the high‐speed fabrication and reproducibility as well as precise control of elliptical apertures location on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.