Abstract

Multifunctional electromagnetic (EM) metasurfaces are capable of manipulating electromagnetic waves with kaleidoscopic functions flexibly, which will significantly enhance integration and applications of electronic systems. However, most known design schemes only realize the reflection or transmission functions under a specific angle range, which wastes the other half EM space and restricts wider applications of multifunctional metadevices. Herein, an encouraging strategy of broadband and wide-angle EM wavefronts generator is proposed to produce two independent functions, i.e., antireflections for transverse electric (TE) waves and retroreflection for transverse magnetic (TM) waves, which utilizes band-stop and bandpass responses of the metasurface, respectively. As a feasibility verification of this methodology, a three-layer cascaded metasurface, composed of anisotropic crossbar structures patterned on the two surfaces of a dielectric substrate with sandwiched orthogonal metal-gratings, is designed, fabricated, and measured. Both the simulated and experimental results are in good accordance with theoretical analyses. This full-space metasurface opens up a new route to multifunctional metasurfaces and will further promote engineering applications of metasurfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.