Abstract

In this paper, the polarization modes of gravitational waves in Horndeski gravity are studied under the Palatini formalism. After obtaining the linearized equation of perturbations in Minkowski background, we find that the polarization modes of gravitational waves depend on the selection of the theoretical parameters. The polarization modes can be divided into quite rich cases by parameters. In all cases of parameter selection, there are $+$ and $\times$ modes propagating at the speed of light but no vector modes. The only difference from general relativity is scalar modes, especially the scalar degrees of freedom can be 0, 1 or 2 in different cases. The appropriate parameter cases can be expected to be selected in the detection of gravitational wave polarization modes by Lisa, Taiji and TianQin in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.