Abstract

A polarization-maintaining porous-core spiral photonic crystal fiber is proposed for efficient transmission of polarization-maintaining terahertz (THz) waves. The finite element method with perfectly matched layer boundary conditions is used to characterize the guiding properties. We demonstrate that by creating artificial asymmetry in the porous core, an ultrahigh birefringence of 0.0483 can be obtained at the operating frequency of 1.0THz. Moreover, a low effective material loss of 0.085 cm-1 and very small confinement loss of 1.91×10-3 dB/cm are achieved for the y-polarization mode with optimal design parameters. This article also focuses on some crucial design parameters such as power fraction, bending loss, and dispersion for usability in the THz regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.